Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microbiol Spectr ; 10(4): e0045922, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1950012

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illnesses associated with COVID-19. To determine whether SARS-CoV-2's cellular tropism plays a critical role in severe pathophysiology in the lung, we investigated its host cell entry receptor distribution in the bronchial airway epithelium of healthy adults and high-risk adults (those with COPD). We found that SARS-CoV-2 preferentially infects goblet cells in the bronchial airway epithelium, as mostly goblet cells harbor the entry receptor angiotensin-converting enzyme 2 (ACE2) and its cofactor transmembrane serine protease 2 (TMPRSS2). We also found that SARS-CoV-2 replication was substantially increased in the COPD bronchial airway epithelium, likely due to COPD-associated goblet cell hyperplasia. Likewise, SARS-CoV and Middle East respiratory syndrome (MERS-CoV) infection increased disease pathophysiology (e.g., syncytium formation) in the COPD bronchial airway epithelium. Our results reveal that goblet cells play a critical role in SARS-CoV-2-induced pathophysiology in the lung. IMPORTANCE SARS-CoV-2 or COVID-19's first case was discovered in December 2019 in Wuhan, China, and by March 2020 it was declared a pandemic by the WHO. It has been shown that various underlying conditions can increase the chance of having severe COVID-19. COPD, which is the third leading cause of death worldwide, is one of the conditions listed by the CDC which can increase the chance of severe COVID-19. The present study uses a healthy and COPD-derived bronchial airway epithelial model to study the COVID-19 and host factors which could explain the reason for COPD patients developing severe infection due to COVID-19.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Adult , Goblet Cells/metabolism , Humans , Hyperplasia/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , SARS-CoV-2
2.
Life Sci Alliance ; 5(4)2022 04.
Article in English | MEDLINE | ID: covidwho-1675572

ABSTRACT

BACKGROUND: There are limited effective prophylactic/early treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral entry requires spike protein binding to the angiotensin-converting enzyme-2 receptor and cleavage by transmembrane serine protease 2 (TMPRSS2), a cell surface serine protease. Targeting of TMPRSS2 by either androgen blockade or direct inhibition is in clinical trials in early SARS-CoV-2 infection. METHODS: We used differentiated primary human airway epithelial cells at the air-liquid interface to test the impact of targeting TMPRSS2 on the prevention of SARS-CoV-2 infection. RESULTS: We first modelled the systemic delivery of compounds. Enzalutamide, an oral androgen receptor antagonist, had no impact on SARS-CoV-2 infection. By contrast, camostat mesylate, an orally available serine protease inhibitor, blocked SARS-CoV-2 entry. However, oral camostat is rapidly metabolised in the circulation, with poor airway bioavailability. We therefore modelled local airway administration by applying camostat to the apical surface of differentiated airway cultures. We demonstrated that a brief exposure to topical camostat effectively restricts SARS-CoV-2 infection. CONCLUSION: These experiments demonstrate a potential therapeutic role for topical camostat for pre- or post-exposure prophylaxis of SARS-CoV-2, which can now be evaluated in a clinical trial.


Subject(s)
Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/administration & dosage , Administration, Topical , Androgens/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Epithelial Cells , Esters/pharmacology , Gene Expression , Goblet Cells/immunology , Goblet Cells/metabolism , Guanidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Serine Endopeptidases/genetics , Signal Transduction , Virus Internalization/drug effects , Virus Replication/drug effects
3.
Dev Cell ; 56(11): 1646-1660.e5, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1233404

ABSTRACT

Mucus-secreting goblet cells are the dominant cell type in pulmonary diseases, e.g., asthma and cystic fibrosis (CF), leading to pathologic mucus metaplasia and airway obstruction. Cytokines including IL-13 are the major players in the transdifferentiation of club cells into goblet cells. Unexpectedly, we have uncovered a previously undescribed pathway promoting mucous metaplasia that involves VEGFa and its receptor KDR. Single-cell RNA sequencing analysis coupled with genetic mouse modeling demonstrates that loss of epithelial VEGFa, KDR, or MEK/ERK kinase promotes excessive club-to-goblet transdifferentiation during development and regeneration. Sox9 is required for goblet cell differentiation following Kdr inhibition in both mouse and human club cells. Significantly, airway mucous metaplasia in asthmatic and CF patients is also associated with reduced KDR signaling and increased SOX9 expression. Together, these findings reveal an unexpected role for VEGFa/KDR signaling in the defense against mucous metaplasia, offering a potential therapeutic target for this common airway pathology.


Subject(s)
Airway Obstruction/genetics , Metaplasia/genetics , SOX9 Transcription Factor/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Airway Obstruction/metabolism , Airway Obstruction/pathology , Animals , Cell Transdifferentiation/genetics , Disease Models, Animal , Gene Expression Regulation/genetics , Goblet Cells/metabolism , Goblet Cells/pathology , Humans , Interleukin-13/genetics , MAP Kinase Signaling System/genetics , Metaplasia/pathology , Mice , Mucus/metabolism , Single-Cell Analysis
4.
Exp Eye Res ; 205: 108501, 2021 04.
Article in English | MEDLINE | ID: covidwho-1082698

ABSTRACT

The angiotensin-converting enzyme 2 (ACE2) receptor has been proved for SARS-CoV-2 cell entry after auxiliary cellular protease priming by transmembrane protease serine 2 (TMPRSS2), but the co-effect of this molecular mechanism was unknown. Here, single-cell sequencing was performed with human conjunctiva and the results have shown that ACE2 and TMPRSS2 were highly co-expressed in the goblet cells with genes involved in immunity process. This identification of conjunctival cell types which are permissive to virus entry would help to understand the process by which SARS-CoV-2 infection was established. These finding might be suggestive for COVID-19 control and protection.


Subject(s)
COVID-19/genetics , Conjunctiva/metabolism , Gene Expression Regulation , Goblet Cells/metabolism , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , COVID-19/metabolism , COVID-19/pathology , Conjunctiva/pathology , Goblet Cells/pathology , Humans , Peptidyl-Dipeptidase A/biosynthesis , RNA/genetics , SARS-CoV-2 , Serine Endopeptidases/biosynthesis
5.
Nat Commun ; 11(1): 5453, 2020 10 28.
Article in English | MEDLINE | ID: covidwho-894390

ABSTRACT

The coronavirus SARS-CoV-2 is the causative agent of the ongoing severe acute respiratory disease pandemic COVID-19. Tissue and cellular tropism is one key to understanding the pathogenesis of SARS-CoV-2. We investigate the expression and subcellular localization of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2 (ACE2), within the upper (nasal) and lower (pulmonary) respiratory tracts of human donors using a diverse panel of banked tissues. Here, we report our discovery that the ACE2 receptor protein robustly localizes within the motile cilia of airway epithelial cells, which likely represents the initial or early subcellular site of SARS-CoV-2 viral entry during host respiratory transmission. We further determine whether ciliary ACE2 expression in the upper airway is influenced by patient demographics, clinical characteristics, comorbidities, or medication use, and show the first mechanistic evidence that the use of angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II receptor blockers (ARBs) does not increase susceptibility to SARS-CoV-2 infection through enhancing the expression of ciliary ACE2 receptor. These findings are crucial to our understanding of the transmission of SARS-CoV-2 for prevention and control of this virulent pathogen.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Coronavirus Infections/pathology , Gene Expression/drug effects , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/pathology , Respiratory System/pathology , Age Factors , Angiotensin-Converting Enzyme 2 , COVID-19 , Cilia/metabolism , Coronavirus Infections/virology , Endothelial Cells , Goblet Cells/metabolism , Humans , Lung/pathology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Respiratory System/metabolism , Respiratory System/virology , Sex Factors , Sinusitis/metabolism , Smoking
6.
Cell Rep ; 32(12): 108175, 2020 09 22.
Article in English | MEDLINE | ID: covidwho-747293

ABSTRACT

To predict the tropism of human coronaviruses, we profile 28 SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) using single-cell transcriptomics across various healthy human tissues. SCARFs include cellular factors both facilitating and restricting viral entry. Intestinal goblet cells, enterocytes, and kidney proximal tubule cells appear highly permissive to SARS-CoV-2, consistent with clinical data. Our analysis also predicts non-canonical entry paths for lung and brain infections. Spermatogonial cells and prostate endocrine cells also appear to be permissive to SARS-CoV-2 infection, suggesting male-specific vulnerabilities. Both pro- and anti-viral factors are highly expressed within the nasal epithelium, with potential age-dependent variation, predicting an important battleground for coronavirus infection. Our analysis also suggests that early embryonic and placental development are at moderate risk of infection. Lastly, SCARF expression appears broadly conserved across a subset of primate organs examined. Our study establishes a resource for investigations of coronavirus biology and pathology.


Subject(s)
Coronavirus Infections/pathology , Nasal Mucosa/metabolism , Pneumonia, Viral/pathology , Receptors, Virus/genetics , Viral Tropism/genetics , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/growth & development , COVID-19 , Cell Line , Chlorocebus aethiops , Enterocytes/metabolism , Gene Expression Profiling , Goblet Cells/metabolism , HEK293 Cells , Humans , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Nasal Mucosa/virology , Pandemics , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Single-Cell Analysis , Vero Cells
7.
Int J Biol Sci ; 16(13): 2464-2476, 2020.
Article in English | MEDLINE | ID: covidwho-695855

ABSTRACT

In 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused infections worldwide. However, the correlation between the immune infiltration and coronavirus disease 2019 (COVID-19) susceptibility or severity in cancer patients remains to be fully elucidated. ACE2 expressions in normal tissues, cancers and cell lines were comprehensively assessed. Furthermore, we compared ACE2 expression between cancers and matched normal tissues through Gene Expression Profiling Interactive Analysis (GEPIA). In addition, we performed gene set enrichment analysis (GSEA) to investigate the related signaling pathways. Finally, the correlations between ACE2 expression and immune infiltration were investigated via Tumor Immune Estimation Resource (TIMER) and GEPIA. We found that ACE2 was predominantly expressed in both adult and fetal tissues from the digestive, urinary and male reproductive tracts; moreover, ACE2 expressions in corresponding cancers were generally higher than that in matched healthy tissues. GSEA showed that various metabolic and immune-related pathways were significantly associated with ACE2 expression across multiple cancer types. Intriguingly, we found that ACE2 expression correlated significantly with immune cell infiltration in both normal and cancer tissues, especially in the stomach and colon. These findings proposed a possible fecal-oral and maternal-fetal transmission of SARS-CoV-2 and suggested that cancers of the respiratory, digestive or urinary tracts would be more vulnerable to SARS-CoV-2 infection.


Subject(s)
Computational Biology , Coronavirus Infections/immunology , Neoplasms/immunology , Pneumonia, Viral/immunology , Adult , Angiotensin-Converting Enzyme 2 , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Enterocytes/metabolism , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Expression Regulation, Viral , Genotype , Goblet Cells/metabolism , Hepatocytes/metabolism , Humans , Immune System , Kidney Tubules/embryology , Male , Neoplasms/complications , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Prognosis , RNA-Seq , SARS-CoV-2 , Signal Transduction
8.
EMBO J ; 39(10): e105114, 2020 05 18.
Article in English | MEDLINE | ID: covidwho-380778

ABSTRACT

The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.


Subject(s)
Bronchi/cytology , Gene Expression , Lung/cytology , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , Single-Cell Analysis , Adult , Aging , Angiotensin-Converting Enzyme 2 , Bronchi/metabolism , COVID-19 , Cells, Cultured , Chronic Disease/epidemiology , Coronavirus Infections/genetics , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Germany , Goblet Cells/metabolism , Humans , Lung/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/genetics , Reference Standards , Sequence Analysis, RNA , Sex Characteristics , Smoking , Tissue Banks
SELECTION OF CITATIONS
SEARCH DETAIL